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Abstract This paper serves to evaluate the dynamic perfor-
mance and the cutting stability of the crankshaft grinding
machine. The governing equations for the 7 degrees of free-
dom (DOF) lumped-mass model are formulated by the
Lagrange energy method. The absolute value of the maximum
negative real part of the overall dynamic compliance
(MNRPODC) and the limiting chip width are the main per-
formance indicators used to explore the structure's dynamic
characteristics and the cutting stability of the grinding ma-
chine in various worktable positions. The effect on system
performance of the distance between the mass center of the
workpiece and the worktable module in the z direction is also
analyzed. Based on the stability theory for regenerative chatter
model, a computer program has been developed that utilizes
the three-dimensional stability lobe diagrams of the multi-
DOF system to automatically identify the stable and chatter
zones. Time domain simulation of the cutting conditions is
used to verify the stability lobe diagrams. Finally, an optimi-
zation analysis utilizing the particle swarm optimization meth-
od is carried out to obtain the optimal design variables. The
results, in terms of |MNRPODC| or the limiting critical chip
width, show improvements by a factor of 6.5 and are superior
to that of the prototype machine.

Keywords Crankshaft grinding machine . State space
approach . Dynamic compliance . Regenerative chatter
model . Stability lobe diagram . Particle swarm optimization

1 Introduction

Chatter resulting from self-excitation during machining has to
be eliminated or minimized in machine tools. Chatter is highly
detrimental to tool life and surface finish and is usually accom-
panied by considerable noise. The chatter mechanism is capa-
ble of modulating a steady, nonperiodic external energy source
and generating a periodic force through the vibration of the
system such that it sustains the unwanted vibration; hence, it is
a self-exciting chatter. If the chip width is large with respect to
the dynamic stiffness of the system, the chatter would start and
grow quickly. Chatter also adversely affects the rate of produc-
tion and, in many cases, its elimination can only be achieved
by reducing the material removal rates. Thus, an effective
approach to the understanding of the performance and stability
of machine tools is an important subject in practice.

Adjustment of the cutting process and modification of the
machining structure are two approaches to study chatter behav-
ior in machining. In the first approach, the stability lobe dia-
gram that predicts the onset of chatter is used to determine the
limiting chip width (blim) and spindle speed to avoid chatter.
Examples include the early work by Tobias and Fishwick [1],
Tlusty and Polacek [2], as well as Koenigsberger and Tlusty
[3]. Later, Altintas and Budak [4] introduced a chatter theory
that can be applied to generate lobe diagrams for linear systems.
Tlusty and Ismail [5] revealed that nonlinearities such as the
tool jumping out of cut, multiple regeneration, process damp-
ing, and a nonlinear cutting constant are negligible in linear
stability analysis. Schmitz [6] conducted a study dealing with
the automatic trimming of machining stability lobes by using a
script in AutoCad. In the second approach, the structure of the
machine is modified to improve its dynamic properties. Many
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studies on the stiffness or structural vibrations of machine
tools were conducted by experimental, analytical, or numeri-
cal methods in the past decades. Among them, Yoshimura [7,
8] achieved highly fruitful results. In 2004, Altintas and Weck
[9] summarized the state of knowledge in the dynamics of
metal cutting and grinding operations. They believed that an
analytic description of the dynamic behavior of grinding
processes was difficult to achieve because of the complexity
of the contact conditions. They also agreed that frequency and
time domain simulation models were effective tools to im-
prove machine tool design and for optimal planning of ma-
chining operations. In 2008 and 2011, Cha et al. [10, 11]
proposed a structural stability prediction model of a surface
grinder using a backpropagation neural network and studied
the stability analysis for a surface grinder in various worktable
positions. The latter is a rarely seen study. Some other works
and the related theory can be found in refs. [12, 13].

In regenerative chatter theories, the stability of the pro-
cess can be analyzed using the Nyquist stability criterion.
One can express blim as a function of the specific dynamic
cutting stiffness Kf and the real part of the frequency re-
sponse Re[G(ω)]. If the chip width bw is large compared with
blim, chatter will occur and only the negative real part of the
frequency response will cause chatter. In addition, the critical
parameter blim (blim,cr) is inversely proportional to the absolute
value of the maximum negative real part of the overall dynamic
compliance (|MNRPODC|) [10, 11]. If the chip width is less
than blim,cr, no chatter will occur regardless of the spindle speed.
Therefore, the smaller the |MNRPODC|, the larger the blim,cr
will be. In a machining process, the position of the worktable
varies, which means that the machine structure or stability is
also changed. In this study, the |MNRPODC| and blim are the
main performance indicators used to evaluate the crankshaft
grinding machine structure's dynamic performance and cut-
ting stability in various worktable positions. Similar to the
author's study in ref. [11], a helpful design technique is pro-
vided for the assessment of structural dynamic performance
that is useful for developing or designing a new machine tool.

2 Basic theory

The crankshaft grinding machine is similar to an external
grinder. The schematic of an external grinder using traverse
motion is shown in Fig. 1. The workpiece is supported and
rotated between centers. The headstock provides the low speed
rotational drive to the workpiece and is mounted, together with
the tailstock, on a worktable that is moved horizontally (z
motion) using a hydraulic drive. The grinding wheel spindle
is horizontal and parallel to the axis of workpiece rotation, and
a horizontal hydraulic feed can be applied to the wheel head in

a direction normal to the axis of workpiece rotation (xmotion);
this motion is known as infeed.

In this study, based on the lumped parameter model of an
M8620 crankshaft grinder with excellent experimental proof
proposed by Zheng et al. [14], the crankshaft grinding ma-
chine with 7 degrees of freedom (DOF) (x1, x2, θ2, x3, θ3, x4,
θ4) dynamic model and analysis in various worktable posi-
tions are presented in Fig. 2. The main parts in the system
consist of the wheel stock, the spindle module, workpiece, and
the worktable module. The spindle module includes the grind-
ing wheel, the wheel axle, and the belt wheel. The worktable
module includes the head stock, the worktable, and the tail
stock. Considering the fact that the direction of the force
which affects the processing accuracy most severely is in the
horizontal direction, the horizontal direction is adopted as the
x coordinate of the system (model view from top in Fig. 1).
The structure of the bed is considered to be fixed when the
worktable module is at a specific position Lz. New parameters
are formed if the position of the worktable module is changed.

The above 7 degrees of freedom can be separately denoted as:

x1 Displacement of the mass center of the wheel stock (in
meter)

x2 Displacement of the mass center of the spindle module
(in meter)

θ2 Angular displacement of mass center of the spindle
module (in radian)

x3 Displacement of the mass center of the workpiece (in
meter)

θ3 Angular displacement of mass center of the workpiece
(in radian)

x4 Displacement of the mass center of the worktable
module (in meter)

θ4 Angular displacement of mass center of the worktable
module (in radian)

Fig. 1 The schematic of an external grinder and defined coordinate system
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2.1 Modeling and formulation

The origin of the z coordinate in the system (Fig. 2) is
at Lz00. In the following section, the dynamic equations

of the system are formulated in accordance with the
Lagrange energy method. The kinetic energy T, potential
energy U, and damping dissipated energy V, of the
system are

T ¼ 1
2

P7
j¼1

mjx
:
j
2 þ Jjθ

:

j

2� �
¼ 1

2 m1x
:

1

2 þ 1
2 m2 þ mL þ mRð Þx:

2

2 þ 1
2 J2 þ mL � L2Lð Þ2 þ mR � L2Rð Þ2
h i

θ
:

2
2 þ 1

2 m3x
:

3

2 þ 1
2 J3 θ

:

3
2

þ 1
2 m4 þ mh þ msð Þx:

4

2 þ 1
2 J4 þ mh� L4hð Þ2 þ ms� L4sð Þ2
h i

θ
:

4

2

U ¼ 1
2

P7
j¼1

kjxj2
� � ¼ 1

2 k1x
2
1 þ 1

2 k2 ðx1 � x2 � L22�θ2ð Þ½ �2 þ 1
2 k3 ðx1 � x2 þ L23�θ2ð Þ½ �2 þ 1

2 k8 x2 � L2L�θ2ð Þ � x3 � LZ �θ3ð Þ½ �2

þ 1
2 k4 x3 � L34�θ3ð Þ � x4 � L44�θ4ð Þ½ �2 þ 1

2 k5 x3 þ L35�θ3ð Þ � x4 þ L45�θ4ð Þ½ �2 þ 1
2 k6 x4 � L46�θ4ð Þ½ �2 þ 1

2 k7 x4 þ L47�θ4ð Þ½ �2

V ¼ 1
2

P7
j¼1

cjx
:
j
2

� �
¼ 1

2 c1x
:

1

2 þ 1
2 c2 x

:
1 � x

:
2 � L22�θ

:

2

� �� �h i2
þ 1

2 c3 x
:
1 � x

:
2 þ L23�θ

:

2

� �� �h i2
þ 1

2 c8 x
:
2 � L2L�θ

:

2

� �
� x

:
3 � LZ �θ

:

3

� �h i2

þ 1
2 c4 x

:
3 � L34�θ

:

3

� �
� x

:
4 � L44� θ

:

4

� �h i
2 þ 1

2 c5 x
:
3 þ L35� θ

:

3

� �
� x

:
4 þ L45�θ

:

4

� �h i2
þ 1

2 c6 x
:
4 � L46�θ

:

4

� �h i2

þ 1
2 c7 x

:
4 þ L47 � θ

:

4

� �h i2
ð1Þ

Fig. 2 The lumped-mass modeling with the worktable position variations of a crankshaft grinding machine
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Substituting Eq. 1 into Lagrange's Eq. 2, where:

d

dt

@T

@ �xj

� �
þ @U

@xj
þ @V

@ �xj ¼ fj ð j ¼ 1; 2; ::::; 7Þ: ð2Þ

The dynamic equations of the structure under force in
matrix form can be expressed as follows:

M½ �7 �7 x
��ðtÞ

n o
7 �1

þ C½ �7 �7 x
� ðtÞ

n o
7 �1

þ K½ �7 �7 xðtÞf g7 �1 ¼ ff g7 �1e
jwt:

ð3Þ

2.2 System matrices

After rearranging, we obtain the following expressions for
the mass matrix [M]7×7, the stiffness matrix [K]7×7, and
damping matrix [C]7×0:

1. Mass matrix [M]7×7

m11 ¼ m1

m22 ¼ m2 þ mL þ mR

m33 ¼ J2 þ mL � ðL2LÞ2 þ mR � ðL2RÞ2
m44 ¼ m3

m55 ¼ J3
m66 ¼ m4 þ mh þ ms

m77 ¼ J4 þ mh � ðL4hÞ2 þ ms � ðL4sÞ2

The other elements are zero in value.
2. Stiffness matrix [K]7×7

k11 ¼ k1 þ k2 þ k3
k21 ¼ k12 ¼ �k2 � k3
k22 ¼ k2 þ k3 þ k8
k31 ¼ k13 ¼ L22 � k2 � L23 � k3
k32 ¼ k23 ¼ �L22 � k2 þ L23 � k3 � L2L � k8
k33 ¼ L22 � L22 � k2 þ L23 � L23 � k3 þ L2L � L2L � k8
k42 ¼ k24 ¼ �k8
k43 ¼ k34 ¼ L2L � k8
k44 ¼ k8 þ k4 þ k5
k52 ¼ k25 ¼ Lz � k8
k53 ¼ k35 ¼ �Lz � L2L � k8
k54 ¼ k45 ¼ �Lz � k8 � L34 � k4 þ L35 � k5
k55 ¼ Lz � Lz � k8 þ L34 � L34 � k4 þ L35 � L35 � k5
k64 ¼ k46 ¼ �k4 � k5
k65 ¼ k56 ¼ L34 � k4 � L35 � k5
k66 ¼ k4 þ k5 þ k6 þ k7
k74 ¼ k47 ¼ L44 � k4 � L45 � k5
k75 ¼ �L44 � L34 � k4 � L45 � L35 � k5
k76 ¼ k67 ¼ �L44 � k4 þ L45 � k5 � L46 � k6 þ L47 � k7
k77 ¼ L44 � L44 � k4 þ L45 � L45 � k5 þ L46 � L46 � k6

þ L47 � L47 � k7

The other elements are zero in value. The relation
holds for L460LL+Lz−d and L470LR−Lz+d, where d is

the distance between the mass center of the work-
piece and the worktable module in the z direction. Lz
is the displacement of the workpiece to the origin.
The location to the right of the original position is a
positive value, while the reverse condition is a neg-
ative value.

3. Damping matrix [C]7×7: Within this system, the damp-
ing is assumed to be proportional. The types of both the
damping matrix and the stiffness matrix are the same.
By changing the k in the stiffness matrix to c, the damp-
ing matrix is formulated.

4. Force vector {f}7×1: A more detail description will
be given in Section 2.4. The equivalent force vector
is f T ¼ 0 1�L2L � 1�1 Lz � 1 0 0½ � in Eq. 3.

So far, the formulation of the lumped-mass mod-
eling for a crankshaft grinding machine of 7 DOF
has been done using the energy method. Subse-
quently, the state space method is used for further
analysis.

2.3 State space approach

As discussed in Gawronski's text [15], there are sev-
eral forms of state space modal models. In the follow-
ing a hybrid modal state space approach is used in
which the system states are modal (displacements and
velocities), but the input and outputs are in general-
ized coordinates. In this study, Eq. 3 can be trans-
formed in the state space model as follows. If the state
variables and input vector are selected as Eq. 4, the fol-
lowing state equation and output equation for the system are
obtained:

uf g14�1 ¼
x
x
:

� 	
; xf g7�1 ¼ x1; x2; θ2; x3; θ3; x4; θ4½ �T ;

ff g7�1 ¼ 0; 1 �L2L � 1; �1; LZ � 1; 0 0½ �T :
ð4Þ

The state equations are

u
:f g14�1 ¼ Ac½ �14�14 uðtÞf g14�1 þ Bc½ �14�7 ff g7�1 ð5Þ

rðtÞf g1�1 ¼ x2 � L2L � θ2ð Þ � x3 � Lz � θ3ð Þ ¼ ff gT1�7 xf g7�1

¼ f T 0

 �

1�14 uf g14�1 ¼ Cc½ �1�14 uf g14�1:

ð6Þ
Thus,

Ac½ � ¼ 0 I
�M�1K �M�1C

� 

; Bc½ � ¼ 0

M�1f

� 

; Cc½ �

¼ f T 0

 �

; Dc½ � ¼ 0½ �:
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If the Δt is the first order hold sampling time step, the
vectors can be discretized as

fukg ¼ xk�xk

� 	
¼ xðk$tÞ�xðk$tÞ

� 	
;f fkg ¼ f f ðk$tÞg;fykg ¼ fyðk$tÞg;

ð7Þ

The equations can then be transformed from a continuous-
time model to a discrete-time model as follows:

ukþ1f g ¼ A½ �2 N�2N ukf g þ B½ �2N�2N fkf g;
ykf g ¼ C½ �N�2N ukf g þ D½ �N�N fkf g;
A½ � ¼ e Ac½ �$t;
B½ � ¼ R $t

0 e½Ac��tdt � Bc½ � ¼ A� I½ � Ac½ ��1 Bc½ �; or
B½ � ¼ 1

$t A� I½ � Ac½ ��1
� �2

Bc½ �:

ð8Þ

The above equations can apply to a time response anal-
ysis and to a time variant nonlinear system.

2.4 Dynamic compliance calculation

In this system, when the mass center of a worktable is moved
to an arbitrary position, the calculation of the dynamic com-
pliance between the grinding wheel and the workpiece is acted
upon by a unit harmonic force in the opposite direction to that
imposed on the position, in response to the related degree of
freedom [16]. The equivalent force is depicted as f T ¼
0 1 �L2L � 1 �1 Lz � 1 0 0½ � in Eq. 4. In addi-
tion, based on the aforementioned theory, the Ac, Bc, Cc, and
Dc in the state space equations are formed and the response for
x2, x3, θ2, and θ3 are calculated. The equivalent dynamic
compliance between the grinding wheel and the workpiece
is obtained by rðtÞ ¼ ðx2 � L2L � θ2Þ � ðx3 � Lz � θ3Þ. The
oriented transfer function G(ω) was established between
the cutting force and the normal displacement to the
cut. The complex form of dynamic compliance in the
frequency domain can be partitioned into real and imag-
inary parts. The real part Re[G(ω)] and the imaginary
part Im[G(ω)] can be used to draw a Nyquist diagram.
Thereafter, it is possible to determine the extents of
system stability by inspecting the absolute values of the max-
imum negative real part. It is also an important basic reference
in the study of cutting stability [9–13, 16].

To obtain an accurate solution of |MNPRODC| as well as
for efficient computation, the “freqgrid” function in the
Matlab toolbox is used for automatically generating a fre-
quency grid for a frequency response. The generated fre-
quency grids are denser around the resonant frequency and
the antiresonant frequency. In this study, the grid density
around the first mode is approximately 40 times higher than
the general case.

2.5 Stability analysis of regenerative chatter vibration

Similar to metal cutting, the main source of the self-
excited chatter vibrations in grinding is also due to a
regenerative effect. Because of the complexity of the
contact conditions, an analytic description of the dynam-
ic behavior of grinding processes is difficult to achieve.
It is assumed that the speed of the grinding wheel is
much faster than the speed of the workpiece. The oper-
ation of the crankshaft grinding machine can be likened
to cylindrical turning where the single point cutting tool
is replaced by a grinding wheel. The general relationships
for the dynamic behavior of orthogonal metal cutting and
chatter stability lobes in a regeneration model are provided
as follows. In this study, these relationships are still valid as
in ref. [11].

The principle behind the occurrence of regenerative chat-
ter is instability due to time lag. In a metal cutting operation,
the current vibration, x(t), between tool and workpiece as
opposing points in the machine structure causes the tool to
cut into the wavy surface x(t−τ) of the previous pass; the
variable chip thickness between the two causes a variation
of the cutting force F(t) that, in a feedback fashion, causes
vibration x(t). The general dynamic chip thickness can be
expressed as follows:

hðtÞ ¼ h0 � xðtÞ � x t � tð Þ½ � ð9Þ
where h0 is the intended chip thickness, which is equal to the
feed rate of the machine. Assuming the force is proportional
to the cutting constant in the feed direction (Kf), the width of
cut bw, and the dynamic chip load, the cutting force equation
can be expressed as:

FðtÞ ¼ KfbwhðtÞ ¼ Kfbw h0 � xðtÞ þ x t � tð Þ½ � ð10Þ
where Kf is also called the specific cutting force per area
(bwh). The value of Kf can be found in refs. [12, 13].

The system can be illustrated as in ref. [11] by the
block diagram, where the parameters of the dynamic
cutting process can be represented in the Laplace do-
main. Input to the system is the desired chip thickness
h0, and the output of the feedback system is the current
vibration, x(t), left on the inner surface. In the Laplace
domain, x(s)0£[x(t)], and the vibration induced on the
outer surface during the previous revolution is e−τsx(s)0
£[x(t−τ)], where τ is the spindle period (period between
two cuts). The dynamic chip thickness in the Laplace
domain is

hðsÞ ¼ h0 � xðsÞ þ e�tsxðsÞ ¼ h0 þ ðe�ts � 1ÞxðsÞ ð11Þ
which produces a dynamic cutting force of

FðsÞ ¼ KfbwhðsÞ: ð12Þ
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The cutting force excites the structure and produces the
current vibrations

xðsÞ ¼ FðsÞGðsÞ ¼ KfbwhðsÞGðsÞ ð13Þ
where G(s) is the oriented transfer function of the vibratory
system.

The chatter stability lobes and the related spindle speed
for a single point machining operations are provided as [16]:

blim ¼ �1

2KfReðGÞ ;
fc
4

¼ N þ "

2p
; " ¼ 2p � 2tan�1 Re GðwÞ½ �

Im GðwÞ½ �
� 


ð14Þ
In Eq. 14, Kf is the specific cutting force in newtons per

square millimeter, depending on material used [16]. blim is
the limiting chip width to avoid chatter, fc is the chatter
frequency in hertz, and Ω is the spindle speed in rev-
olutions per second. N is the largest possible integer
such that ε/(2π)<1. ε is the phase (in radian) between current
and previous tool vibrations.

When the stability lobe diagram increases in complexity,
most scholars ignore the interaction between the stable and
unstable zones of intersection lobes [17]. In the end milling
of thin-walled plates, due to the change of cutting position,
mass, and stiffness of cutting system and other factors, the
two-dimensional stability lobe diagram sometimes is not
comprehensive to describe the stability of chatter system.
Therefore, the 3D lobe diagram construction for the dynam-
ical behavior variation of the workpiece with respect to the
tool position or tool tip node was investigated. Thevenot et
al. [18], Tang et al. [19], and Song et.al. [20] had con-
structed a three-dimensional stability lobe diagram of the
spindle speed, axial depth, and tool position with a constant
radial depth. In this study, an algorithm was designed for
automatically trimming the intersected line between stable
and unstable zones occurring in a 2D or 3D lobe diagram.
This study addresses the changes to system dynamic per-
formances caused by changes in the position of the workta-
ble. The concept is seldom found in other literatures except
in ref. [11].

2.6 The PSO algorithm [21]

Particle swarm optimization (PSO) is a population-based
stochastic optimization technique developed by Eberhart
and Kennedy in 1995, inspired by the social behavior of
birds flocking or fish schooling. Similar to many other
global optimization methods, the operation of the PSO
method requires an iterative process and a proper stopping
criterion. On each iteration in the PSO method, each par-
ticle's current velocity is updated based on the particle's
previous velocity, the particle's position vector relative to
its best location, and position vector relative to the global

best location. Then, each particle's position is updated using
the particle's new velocity. In mathematical terms, the two
equations describing the movement of a particle in an iter-
ation are:

v t þ 1ð Þ ¼ w vðtÞ þ c1r1 pðtÞ � xðtÞð Þ þ c2r2 gðtÞ � xðtÞð Þ
ð15Þ

x t þ 1ð Þ ¼ xðtÞ þ v t þ 1ð Þ ð16Þ

Equation 15 updates a particle's velocity. The term v(t+1)
means the velocity of the particle at time t+1 or at t+1
iterations. Notice that v, p, g, and x are vectors. The velocity
of a particle depends on three components. The first term is
w v(t). The factor w is called the inertia weight and is a
constant to be defined; v(t) is the velocity at time t. The
second term is c1 r1 (p(t)−x(t)). The c1 is a constant called
the cognitive (or personal or local) weight. r1 is a random
variable in the range [0, 1]. p(t) is the particle's best position
found so far. x(t) is the particle's current position. The third
term in the velocity update equation is c2 r2 (g(t)−x(t)). c2 is
a constant called the social or global weight. r2 is a random
variable in the range [0, 1]. g(t) is the global best position
found by any particle in the swarm so far. Once the new
velocity, v(t+1), has been determined, it is used to compute
the new particle position x(t+1) by Eq. 16.

3 System performance analysis

3.1 The setting of basic parameters and system simulation

In this study, the data were adopted from the prototypeM8620
crankshaft grinder with excellent results achieved [14]. The
values of parameters for the simulated spring constants of the
substructural interface, substructural masses, substructural
moments of inertia, and various corresponding lengths
are shown in Tables 1, 2, 3, and 4. After checking the
response of the original model, the length d is equal to
0.00539 m at position Lz00. The damping coefficient of
the interface is temporarily set in accordance with known
values from relevant data. Now, the coefficient is set as
½C� ¼ b � ½K� ¼ ð1:0� 10�5Þ � ½K�, the equivalent model
damping ratios can be computed as 0.0987 % (32.74 Hz),
0.113 % (36.73 Hz), 0.1594 % (51.07 Hz), 0.3121 %
(127.08 Hz), 0.5003 % (173 Hz), 1.1906 % (379.1 Hz), and

Table 1 The spring constants (9.8×106N/m) of substructural interface

k1 k2 k3 k4 k5 k6 k7 k8

5.9 19.3 84.4 1.2 0.69 8.4 15.3 0.66
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1.5316% (487.59 Hz). This agrees with the general belief that
the logarithmic decrement is near or less than 0.3 for a ma-
chine tool structure [22]. However, the actual stiffness and
damping characteristics of the interface vary with several
factors such as the selected types of bearings and ball screw,
the values of assembly preload, the processing methods, and
the joint surface. The actual stiffness and damping character-
istic of the interface should be obtained by further experimen-
tal verification.

The numerical simulation is performed using the above
parameters. Figure 3 shows the Nyquist plots of the sys-
tem dynamic compliance in various worktable positions.
When the movable worktable is located at Lz00 and c800,
|MNRPODC| is 2.66×10−6m/N. When the movable workta-
ble is located at Lz00 and c800.66×98 Ns/m, |MNRPODC| is
2.08×10−6m/N. When the movable worktable is located at
Lz0−0.2 m and c800.0, |MNRPODC| is 2.83×10−6m/N.
When the movable worktable is located at Lz00.2 m and
c800.0, |MNRPODC| is 2.19×10−6m/N. It is noticed that
when the values of parameters Lz or c8 are changed, a
significant change to the system dynamic performance can
occur.

3.2 The effect of d on MNRPODC

As d increases from 0 to 16.2 cm, it is seen that the
natural frequencies of the system in the numerical anal-
ysis have changed slightly (mainly in the first three
natural frequencies), but the MNRPODC performance
curve does not change within −0.65 m≤Lz≤0.3 m as
Fig. 4. Therefore, with the prototype assembly, the
distance between the mass center of the workpiece and
the worktable module in the z direction has little effect
on the cutting stability.

3.3 Static stiffness analysis

When the static stiffness ks between the tool and the work-
piece is computed at a location (Lz), no inertia force and

damping force are involved. That means that ω00.0 in
Eq. 3, and the equation of motion becomes

½K�7�7 xf g7�1 ¼ f f g7�1e
jwt:

The compliance between the tool and the workpiece can
be expressed as

rðtÞf g1�1 ¼ 1=ks ¼ x2 � L2L � θ2ð Þ � x3 � LZ � θ3ð Þ

¼ ff gT1�7 xf g7�1 ¼ ff gT1�7 K½ ��1
7�7 ff g7�1:

ð17Þ
The correlation between the ks and Lz for various k8

is shown in Fig. 5. It can be seen that the system static
stiffness is different at various locations with changing
k8. The static compliance from the prototype parameters

at location Lz00.0 is the value of 2:656 times10�8 m=N

1=ks ¼ 1=1:768 times107 m=N
� �

, which is the sum ofmode
compliance at all natural modes. No matter how much k8
changes, the greatest system stiffness occurs at location Lz0
0.2 m since the stiffness k4 is greater than k5.

3.4 The MNRPODC performance

When the initial sets of parameters with c800.0 are used, the
relationship among the natural frequencies, MNRPODC and
frequency emerge at MNRPODC in various worktable posi-
tions, is illustrated in Fig. 6. The MNRPODC curve for the
working range from −0.6 to 0.338 m shows an upward
concave shape. Near the position Lz0−0.2 m, the curve is
shown with the minimum value of −2.832×10−6m/N. This
occurs at the frequency of 129.8 Hz, close to the fourth
natural frequency. At this position, the second natural fre-
quency is very close to the first natural frequency owing to
the coupling effect. The remaining parts of the MNPRODC
curve range from 0.338 to 0.6 m, increasing gradually to the
ends with all emerging frequencies close to the first natural
frequency.

3.5 Chatter stability lobes

It is assumed that the hard spots in the material would cause
a regenerative chatter effect as the previously mentioned
theory proposed. When the stability lobe is calculated by
Eq. 14, the cutting force coefficient of 1035 carbon steel Kf

is 2.3×109N/m2, the prototype parameters with c800.0 are
adopted. The 3D stability lobe for ð; blim; LzÞ is shown in
Fig. 7. The top part of the surface is the chatter zone. The
bottom part is a stability zone. A detailed discussion of the
lobe diagrams states as follows:

1. Figure 8 shows the 3D view of stability lobe diagram
along the Lz direction. In that figure, the critical value of

Table 2 The masses (in kilogram) of substructures

m1 mL mR m2 m3 mh ms m4

1,273 90.5 46.6 52.4 36 788 733 1,680

Table 3 The moments of inertia (in kilograms times meter square) of
substructures

J2 J3 J4

27.13 1.67 3,827.7
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blim is 0.077 mm and the position of the worktable
ranges from −0.65 to 0.65 m. In an absolutely stable
zone, no chatter will be present at any spindle speed.
That is the reason that near the position Lz0−0.2 m
where the MNRPODC is minimized, and the value is
2.832×10−6m/N. The blim,cr can be directly obtained
from blim;cr ¼ 1 2 � Kf � MNRPODCj j� ��

in the traverse
positions of the worktable.

2. If the spindle is operated at low speed, the worktable
position is limited within −0.5 m≤Lz≤0.35 m. No chat-
ter occurs when the spindle is running at Ω0120 Hz
with a maximum of blim of 1.0 mm. In this case, the blim
should be 12 times as that in an absolutely stable zone
(zone A in Fig. 9).

3. If the spindle is operated at high speed, the worktable
position is limited within −0.5 m≤Lz≤0.35 m. No chat-
ter occurs when the spindle is running at Ω0120 Hz

with a maximum of blim of 3.7 mm. In this case, the blim
should be 48 times as that in an absolutely stable zone
(zone B in Fig. 9).

3.6 Grinding time domain simulation [12, 13, 16]

Time domain simulation is an alternative method for deter-
mining regenerative chatter. The machining forces and struc-
tural vibrations are simulated in the time domain for a specific
set of process parameters. The forces and displacements are
examined to determine if chatter is present. A time domain
simulation in this study is executed as follows: (1) the instan-
taneous chip thickness is determined using the current and
previous tool vibrations; (2) the cutting force is calculated; (3)
the force is used to find the new displacement; and (4) the
process is repeated in small time steps. The machining force is
calculated using Eq. 10 and the displacement is calculated

Table 4 The corresponding lengths (in centimeter) of substructures

L12 L13 L22 L23 L2L L2R L34 L35 L44 L45 L4h L4s LL LR

27.25 27.25 17.802 36.698 32.802 52.798 71.5 70.75 70.961 71.289 102.46 102.04 112.5 118.5
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Fig. 3 The Nyquist plots of the prototype with different c8 and Lz
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using Eq. 13. Both incorporate the numerical technique of
Eq. 8. In the following section, some time domain simulations
are demonstrated to validate the lobe diagram.

When the aforementioned system parameters with c800.0
are used, the corresponding 2D stability lobe diagram at

Lz0−0.2 m is shown in Fig. 10. In this figure, point B is
located in the stability zone, but both points A and C are located
at the chatter zone. Applying the time domain simulation, the
force and tool displacement near the stability thresholds can be
determined (Fig. 10). Figure 11 shows the results (point A) of

Fig. 4 The correlation between
the MNRPODC and Lz for
various d

Fig. 5 The correlation between the ks and Lz for various k8
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Fig. 6 MNRPODC, natural frequencies, and MNRPODC-emerged frequency, as a function of Lz

Fig. 7 Three-dimensional stability lobe diagram for Ω−blim−Lz
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Fig. 8 3D view of stability lobe diagram along Lz direction for the prototype with parameters under worktable movement range (−0.65 m≤Lz≤0.65 m)
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Fig. 9 3D view of stability lobe diagram along the Lz direction for the prototype with parameters under worktable movement range (0.5 m≤Lz≤0.35 m)
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Fig. 10 Stability lobe diagram at location Lz0−0.2 m

Fig. 11 Time domain displacement and force for bw05.3 mm, h005 μm, and Ω0425 Hz (unstable point A in Fig. 10)
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Fig. 12 Time domain displacement and force for bw04 mm, h005 μm, and Ω0450 Hz (stable point B in Fig. 10)

Fig. 13 Time domain displacement and force for bw04 mm, h005 μm, and Ω0450 Hz (unstable point C in Fig. 10)
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the conditions of bw05.3 mm, h005 μm, and Ω0

425 Hz. The force and displacement values are increas-
ing significantly after 0.7 s. On the other hand, Fig. 12
shows the results (point B) of the conditions of bw0
4 mm, h005 μm, and Ω0425 Hz. The force and dis-
placement values are decreasing significantly with time
within 0.2 s. Figure 13 shows the results (point C) of
the conditions of bw04 mm, h005 μm, and Ω0450 Hz.
The force and displacement are increasing significantly
after 0.3 s. From these results, the correctness of the
stability lobe diagram is verified. Moreover, the strategy
of decreasing the blim or increasing spindle speed Ω is
confirmed as a good way to suppress chatter.

3.7 Optimization analysis

The factors (k2, k4, k5, and k8) of the crankshaft grinding
machine can be determined by the energy balance principle
or sensitivity analysis. When the worktable is in different
positions, the improved system dynamic performance and
the optimum design can be described as follows:

Maximize : MNRPODCj jprototype � MNRPODCj jprototype improved
� �

s:t: 10 � k2 � 30; 0:1 � k4 � 9:7;

0:0575 � k5 � 5:5775; 0:055 � k8 � 5:335;

The unit of k is 9:8� 106 N=m;
within� 0:65m � Lz � 0:65 m:

Table 5 The summaries of optimal search result by the PSO method (Prototype parameters with c800.0 and [C]01.0E−5×[K])

Design variables (range)

Case study MNPRODC Improved factor k2 (10~30) k8 (0.055~5.335) k4 (0.1~9.7) k5 (0.0575~5.5775)

Prototype –0.000002832 1.00 19.3 0.66 1.2 0.69

PSO_run1 (optimum) –4.3753E−07 6.4728 10 5.335 7.039 2.9313

PSO-run2 –4.3795E−07 6.4665 10 5.335 7.099 2.9347

PSO-run3 –4.4234E−07 6.4023 10 5.335 5.3343 3.1465

PSO-run4 –4.3787E−07 6.4677 10 5.335 8.0232 2.8668

PSO-run5 –4.3804E−07 6.4652 10 5.335 8.2281 2.8674

Fig. 14 Comparison of MNRPODC performance for various positions between the optimal design and prototype
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The case of c80O, in the form of [C]010−5×[K] Ns/
m, is considered in the optimization analysis. Here, the
prototype values of |MNRPODC| is 2.832×10−6m/N.
PSO parameters for this case is set by (1) swarm
size020, (2) maximum velocity of particle04, (3) inertia
weight00.9 (static), (4) local weight (self-confidence)0
2, (5) global weight (swarm confidence)02, (6) maxi-
mum iterations0200 epochs, (7) minimum global error
gradient01.0×10−8, and (8) epochs before error gradient
criterion terminates run050.

Through several runs by the PSO method, Table 5 is the
summary of optimal results for these cases. It was found that
the best values of |MNRPODC| are 4.3753×10−7m/N com-
pared to the 2.832×10−6m/N value of the prototype, an im-
provement factor of approximately 6.5 and the corresponding
design variables were k2010, k401.2, k502.9313, and k80
5.335. The unit of k is 9.8×106N/m. The performance curves
of MNRPODC in various positions are compared between the
optimal design and prototype for this case as shown in Fig. 14.
The 3D view of stability lobe diagram along the Lz direction
for the best value is shown in Fig. 15. It shows that the
regardless of the spindle speed, the limiting critical chip width
increases from 0.077 mm of prototype to 0.5 mm after opti-
mization, an improvement factor of approximately 6.5.

4 Conclusions

Based on the results obtained in this study, the following
conclusions are made:

1. TheMNPRODC curve for the working which ranges from
−0.6 to 0.338 m shows an upward concave curve. Near the
position Lz0−0.2 m, the curve with the maximum value of
|MNRPODC| is generated, but the structural performance
here is the worst among all the tested cases. At this posi-
tion, the second natural frequency is very close to the first
natural frequency owing to the coupling effect. This is the
main cause of decreased limiting critical chip width.

2. An increase of k8 and c8 will improve the machine stabil-
ity which is indicated by the value of corresponding
|MNRPODC|. For any spindle speed, the blim,cr can
be easily calculated by using the equation blim,cr0

1/(2 · Kf · |MNRPODC|) in the traverse positions
of the worktable. Therefore, a large value of blim,cr is
recommended in practical applications.

3. In the case of the prototype assembly, the distance
between the mass center of the workpiece and the work-
table module in the z direction has little effect on the
cutting stability. It means that the lines of the center of

Fig. 15 3D view of the stability lobe diagram along the Lz direction for the optimal case under worktable movement range (−0.65 m≤Lz≤0.65 m)
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gravity of the workpiece and the worktable module
along x direction do not need to be collinear.

4. The curves for ks and Lz are parabolic, when k8 has a
fixed value. Regardless of whether k8 changes, the
greatest static stiffness occurs at location Lz00.2 m
since here the movement parts include two layers (the
workpiece and the worktable module) and the stiffness
k4 is greater than k5 in the model. This is different from
the constant static stiffness analysis in various positions
for a surface grinder model [11].

5. Based on the regenerative chatter model and stability
theories, a program for producing a three-dimensional
stability lobe diagram for the multi-DOF machine sys-
tem is developed which can automatically trim the un-
necessary line-crossing issues between the stable and
chatter regions. Meanwhile, by using the time domain
analysis, the predictable response within a short period
of time can be attained. The method can also be used to
verify the stability lobe diagrams.

6. In the optimization analysis, the limiting critical chip width
(blim,cr) can be increased from 0.077 mm in the prototype
machine to 0.5 mm when the optimal design variables are
used.With a factor of 6.5, quality improvement is obtained.
It also shows that the larger the value of k8, the smaller
the |MNRPODC| will be in various worktable positions.
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